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ABSTRACT 

We study possible cosmological solutions to higher dimensional model of gravity with 

a s-form taking values in the physical space, and show that it is possible to integrate 

Einstein’s equations exactly for flat physical and internalspaces. We then present a detailed 

analysis of the possible trajectories in phase plane of the Hubblefactors and find the allowed 

regions for a physically acceptable cosmology. These turn out be rather small. 
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Unification of gravity with gauge interactions in higher dimensional space-times has 

been the object of renewed interest for the past 10 years. With the advent of supersym- 

metry it was hoped that the long standing problem of quantizing the gravitational field 

would eventually be resolved in a similar way to the N = 4 super Yang-Mills model. Nev- 

ertheless, once we formulate supergravity theories in higher dimensions, the basic diseases 

of quantum gravity were still present and only mildly improved. So, the proof that super- 

string theories 1 were finite to at least one-loop and anomaly free in 10 dimensions *J, gave 

new strength to higher dimensional theories. Gravity at distances of the order the Planck 

length would have a radically different behaviour, with the gravitational interactions being 

mediated by massive modes of the string, very much like weak interactions being mediated 

by massive vector bosons for E 2 100GeV. 

With such radically different gravitational behaviour at Planck energies, many changes 

will take place in our understanding of the initial singularity and evolution of the early 

Universe 4. We do not propose to tackle these problems here but only to study the 

classical evolution of a higher-dimensional model with two dynamical fields, the graviton 

~MN and the Kalb-Ramond field strength FMNP = 3a[~A~p]. The interest in studying 

cosmologies with the above 3-form comes from the fact that it plays a fundamental role 

in string models and is always present when we take the point-like limit of strings and 

consider the ten dimensional supergravity action5s as the starting point of a unified field 

We will show that, for this simple model, it is possible to integrate Einstein’s equations 

exactly in terms of the Hubble factors for the physical and internal spaces. This procedure 

has an interest on its own as it provides a powerful tool to extract a wealth of qualitative 

information about the possible regions of the phase space that allow for viable cosmologies. 

We shall see that the set of initial conditions that produce a Friedmann-likemodel is very 

small(possibly of measure zero). 
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The action can be written as 

with 

SC - d’Oz&?j J 
Setting 16?rG = 1 the field equations take the form 

1 
RMN - SgMNR = -TMN 

TMN = FMPQF~~ - ;Fpr++PQR&w 

(1) 

(2.1) 

(2.2) 

aM @FMNP 1 = 0 (3) 

I 
where capital latin indices run from 0 to 9, greek indices run from 0 to 3 and small 

latin indices from 4 to 9. 

In order to obtain a compactified solution of the field equations, we follow Myung and 

Kim7 and write the Kalb-Ramond field components as 

F fivp = Epvpv v (4.1) 

F -F -F -0 mnp - pYp - p"p - (4.3) 

where au = Pn(z) can be thought of as being the gradient of a space-time dependent 

scalar field n(z). It is easy to check that the Kalb-Ramond field equation (eq. (3)) is 

trivially satisfied with the above ansatz. 

In order to obtain a suitable cosmological description of the above model, we assume, 

as usual, that the line element is given by the generalized Robertson-Walker metric’, 
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ds2 = -dt2 + R&)‘&(zr)dzidzj + Rs(t)2;m,(yP)dz”dz” (5) 

If we additionally impose on the field v(z) the condition of being only time dependent, 

we obtain the following field equations, for flat 3 and 6 dimensional spaces, 

32 +Bs = 242 

+)+(&+&=)$+ 

(64 

(6.2) 

(6.3) 

The authors of ref. (7) claimed to have found a particular solution to equation (6) 

where the physical 3-space expand exponentially while the internal space oscillates in 

time. However, the solutions were obtained under the assumption of having constant 

expansion rates (Hs and Hs constants), which is a strong constraint on the dynamical 

system. Furthermore, we would like to point out that their solution is inconsistent with 

the field equations, as these do not accept an oscillating solution for the internal manifold. 

Here, we shall integrate eq.(6) in an exact way and later analyse the dynamical 

behaviour of the system. If we introduce the logarithmic variables Ha = w and 

& = %!$d we can rewrite eq.(6) as a first order quadratic differential system as follows, 

& + 3H32 + 6H3HG = ;G2 
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I-& + SH,a + 3H3Hs = -;G2 

substituting (7.1) into (7.2) and (7.3) we get 

3 45 
H, = -H3” + 21H3H6 + -H,” 

2 2 

(7.3) 

(8.1) 

3 27 
He = --Hi - 12H3Hs - -HG’ 

2 2 (8.2) 

In order to solve eqs. (8.1) and (8.2) exactly, we write H3 and HS in terms of new 

variables r and 0 as 

H3 = rsin0 i 1 

Hs = rcos0 

After some algebra, eq.(S) reduces to 

(Q-1) 

(9.2) 

i = $2(3~i~3e + 39sin2ec0s e + 218ine cos2e - 27cos3 e) (10.1) 

~4 = $P (3sin30 + 27sin28 cos e + 69sinB cos2 e + 45 ~05~ e) (10.2) 

Upon introduction of yet another new variable z = tan@, eq.(lO) can be writen aa a 

single equation relating r and x as follows 

dr x3 + 13z2 + 7x - 9 dx 

-= z3+Qz2+23z+15 T > l+za 
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By using partial fractions, eq. (11) can be easily integrated to give 

7 = To 
[ 

(x2 + l)‘k + 5)3 
(x + 3)6(2 + 1) I 

As is well known from the theory of non-linear differential equations, the zeros of 

eq.(10.2) give the invariant lines in the phase plane H3 x Hs ‘. These invariant lines are 

solutions of eqs. (8.1) and (8.2) where H3 = aH~(a = constant), which in our csse will 

be simply given by 

H3 = -He ; H3 = -3Hs ; H3 = -5Hs (13) 

These lines are shown in fig. 1 with the labels a I, oz and ~ys (see fig. 1) respectively. 

Fig. 1 

Another important property of our dynamical system is that H3 = He = 0 is a critical 

point. Using this information together with the invariant lines and the solution (12), we 

can construct the phase plane diagram H3 x He as shown in fig.1. Note that the lines a2 

and as were not drawn with the right slope to allow an easier reading of the trajectories. 

In what follows we will try to extract all the possible information from the dynamical 

analysis of the phase plane diagram. 

First we note that along the invariant lines we can obtain the exact solution for the 

scale factors as functions of time; 

i) ~1 = -1, we find that 

-S(t) = -He+) = 1 -TH t ;R3 - t-i ; RB - tt 
Cl 

ii) QZ = -3, we find that 

H3(t) = --3&(t) = 1 +TH t ; R3 N tf ; R6 - t-k 
0 

(14.1) 

(14.2) 
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iii) as = -5, we find that 

f&(t) = -5Hs(t) = 1 +THot ; R3 -t% ; R6 N t-i 
5 

(14.3) 

where Ho is the initial values for H3 (He). The solution described by (14.1 and 14.3) 

are special cases of those found by Chodos and Detweiler in ref. (8). They represent 

Kasner solutions asymptotically. 

The arrows for the critical lines are obtained by analysing the sign changes in 113(t) 

and Hs(t) for each solution (or that of i in eq.(lO. 1). The reader can easily verify that 

only solutions (14.1) and (14.3) are compatible with the field equations for rj = 0. It is 

not sufficient to find the power law solutions from the critical lines since the consistency 

condition, eq. (6.1) has to be satisfied together with eqs. (6.2) and (6.3). Alternatively, 

we could see that the whole region between the al and as lines (regions II, III, V and VI) 

is excluded (shadow region in fig.1) since it would produce a negative or imaginary radius 

(trajectories in these parts of the phase plane are of no physical significance). 

As a second step we have to follow the allowed trajectories for all possible initial 

conditions for H3 and Hs. We can do this by studying each of the allowed regions, namely, 

regions I, IV and the two invariant lines ar and crs. We will concentrate on the region 

H3 2 0 since we consider that only an initially expanding 3-space is of physical relevance. 

Nevertheless, once the behaviour for region I is understood, then the behaviour for region 

IV follows from symmetry arguments. 

If the initial conditions are such that both H3 and HS are positive (quadrant I), the 

physical radius R3 expands (H3 increases) until a maximum expansion rate is reached 

after which a deceleration phase takes over, eventually the model gets to a point where 

there is no expansion or contraction (H3 = 0). The internal radius (RG), on the other 

hand, expands with an increasing acceleration, the model approaches the invariant line o1 

asymptotically. This is not a satisfactory solution since the model describes a contracting 
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three space and an expanding internal space. However, we should be careful with the 

timescales with which this solutions approach the invariant line. With this in mind we 

could say that the subregion of I than lies in the second quadrant, could be acceptable 

as it describes an expanding three space and a contracting internal space, but only for a 

finite time. 

Turning now to region IV we obtain a universe where the three radius expands, then 

contracts and decelerates to eventually reach a static point (H3 + 0). The internal space 

on the other hand contracts for some time, then expands and also tends to a static point 

(He + 0). The model in this region takes an infinte time to reach the critical point. 

Unfortunately, the critical point is a saddle point so its stability depends strongly on the 

type of perturbations. If we assume the Universe starts in that position then its easy to 

see that if perturbations displace the solution towards the upper half of the phase space 

then the solution is unstable, while the contrary occurs if the perturbation, acts the other 

way. 

The same can be said about the invariant lines concerning their stability as solutions 

of the model. The only acceptable solution is that describe by the CQ line (eq. 14.3). 

This case is not bad since it provides, at least qualitatively, the right type of behaviour, 

an expanding physical universe and a contracting internal one. This solution is stable as 

long as perturbations are such that trajectories do not enter the forbiden regions (shaded 

region). 

Going back through all the analysis, we find a surprisingly small region of the whole 

phase plane to be of possible physical relevance. If we assume a strictly conservative point 

of view, only the as line ( and possibly a small neigbourhood around the line) in the 

IInd quadrant provides an expanding universe, with a power law behaviour very similar 

to the radiation dominated scenarios of conventional 4-dimensional cosmologies, and a 

shrinking internal space, as desired from observations. We expect that when the internal 
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radius approaches the singularity, quantum effects will play a balancing role, stopping the 

collapse. 

Although this is a highly simplified model, it is reasuring to know that this behaviour 

is not completly ruled out a priori. 

In any case, it does not seem possible to obtain an exponential inflation in this model. 

If we start with an unaturally large internal space, assume adiabatic expansion for the 

whole lo-dimensional space-time and wait long enough (since a power law expansion is 

relatively slow), the shrinking of the internal space may generate the correct amount of 

entropy lo. 

It must be said that quantum effects coming from one loop corrections on the matter 

fields, or the Casimir forces, will probably play an important role at these energies, and 

were neglected for simplicity. We intend to gradually add more structure to the field equa- 

tions to understand precisely the function of each of the extra terms. For example, with 

the inclusion of the Yang-Mills field plus a gaugino condensate as an effective cosmological 

constant”, the internal radius will acquire a potential that may lead to an inflationary 

phase in the physical space-time. If this is correct, superstrings will be as viable cosmo- 

logically as they are as candidates for a finite theory of gravity. And, surely, these two 

aspects should be manifestly unified in a coherent theory of physical interactions. 

We would like to thank R. Holman for useful comments and suggestions. One of us 

(M.G.) would like to thank The National Research Council of Brazil (CNP,) for financial 
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Fig. 1 The Phase Plane trajectories are shown for a variety of possible initial values 

for H3 and He? Note that the shadow region is excluded from analytical considerations. 
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